Clinical Studies

Professional Literature about Electrical Cardiometry™

Selection of Clinical Studies

The Electrical Cardiometry™ method has been successfully applied and validated in a large number of clinical studies. Different search criteria allow a selected listing of professional publications.

Clear selection

List of Publications

EL-Fattah, N. M. A., EL-Mahdy, H. S., Hamisa, M. F., & Ibrahim, A. M. (2024). Thoracic fluid content (TFC) using electrical cardiometry versus lung ultrasound in the diagnosis of transient tachypnea of newborn. European Journal of Pediatrics. https://doi.org/10.1007/s00431-024-05507-5

Paranjape, V. V., Henao-Guerrero, N., Menciotti, G., Saksena, S., & Agostinho, M. (2023). Agreement between Electrical Cardiometry and Pulmonary Artery Thermodilution for Measuring Cardiac Output in Isoflurane-Anesthetized Dogs. Animals, 13(8), 1420. https://doi.org/10.3390/ani13081420

Rao, A. D., & Shelgaonkar, V. C. (2023). An electrocardiometric evaluation of dynamic cardiac parameters to assess fluid responsiveness in major non-cardiac surgery. Indian Journal of Applied Research, 13(5).

Yokota, A., Kabutoya, T., Mitama, T., Okuyama, T., Watanabe, H., Kamioka, M., Watanabe, T., Komori, T., Imai, Y., & Kario, K. (2023). Comparison of heart rate and cardiac output of VVI pacemaker settings in patients with atrial fibrillation with bradycardia. J Arrhythm, 39(4), 574–579. https://doi.org/10.1002/joa3.12874

Paranjape, V. V, Garcia-Pereira, F. L., Menciotti, G., Saksena, S., Henao-Guerrero, N., & Ricco-Pereira, C. H. (2023). Evaluation of Electrical Cardiometry for Measuring Cardiac Output and Derived Hemodynamic Variables in Comparison with Lithium Dilution in Anesthetized Dogs. Animals (Basel), 13(14), 2362. https://doi.org/10.3390/ani13142362

Middel, C., Stetzuhn, M., Sander, N., Kalkbrenner, B., Tigges, T., Pielmus, A.-G., Spies, C., Pietzner, K., Klum, M., von Haefen, C., Hunsicker, O., Sehouli, J., Konietschke, F., & Feldheiser, A. (2023). Perioperative advanced haemodynamic monitoring of patients undergoing multivisceral debulking surgery: an observational pilot study. Intensive Care Medicine Experimental, 11, 61. https://doi.org/10.1186/s40635-023-00543-1

Khamis, S. A., Zahran, A., Elsharkawy, M. S., Soliman, A. A., & Torayah, M. (2023). Assessment of postdialysis recovery time and associated hemodynamic changes by cardiometry in hemodiafiltration compared to conventional hemodialysis in patients on regular renal replacement therapy. Journal of The Egyptian Society of Nephrology and Transplantation, 23(4), 156. https://doi.org/10.4103/jesnt.jesnt_9_23

Pedgaonkar, R. A., Singh, N. G., Dhananjaya, M., Nagaraja, P. S., Nagesh, K. S., & Prabhakar, V. (2023). Comparison of noninvasive cardiac output monitoring by electrical cardiometry with transthoracic echocardiography in postoperative paediatric cardiac surgical patients – A prospective observational study. Annals of Cardiac Anaesthesia, 26(4), 380–385. https://doi.org/10.4103/ACA.ACA_9_23

Martini, S., Italo, ·, Gatelli, F., Ottavio Vitelli, ·, Vitali, F., De Rienzo, F., Parladori, R., Corvaglia, · Luigi, & Martinelli, S. (2023). Impact of patent ductus arteriosus on non-invasive assessments of lung fluids in very preterm infants during the transitional period. European Journal of Pediatrics, 182, 4247–4251. https://doi.org/10.1007/s00431-023-05106-w

Martini, S., Gatelli, I. F., Vitelli, O., Galletti, S., Camela, F., De Rienzo, F., Martinelli, S., & Corvaglia, L. (2023). Prediction of respiratory distress severity and bronchopulmonary dysplasia by lung ultrasounds and transthoracic electrical bioimpedance. European Journal of Pediatrics, 182(3), 1039–1047. https://doi.org/10.1007/S00431-022-04764-6

Kamel, Y. A., Sasa, N. A. G., Helal, S. M., Attallah, H. A., & Yassen, K. A. (2023). Monitoring the effects of automated gas control of sevoflurane versus target-guided propofol infusion on hemodynamics of liver patients during liver resection. A randomized controlled trial. Journal of Anaesthesiology Clinical Pharmacology, 39(1), 74–83. https://doi.org/10.4103/joacp.joacp_168_21

Balog, V., Vatai, B., Kovacs, K., Szabo, A. J., Szabo, M., & Jermendy, A. (2023). Time series analysis of non-invasive hemodynamic monitoring data in neonates with hypoxic-ischemic encephalopathy. Frontiers in Pediatrics, 11, 289. https://doi.org/10.3389/fped.2023.1112959

Zidan, M. M. O. M., Osman, H. A., Gafour, S. E., & el Tahan, D. A. (2022). Goal-directed fluid therapy versus restrictive fluid therapy: A cardiomerty study during one-lung ventilation in patients undergoing thoracic surgery. Egyptian Journal of Anaesthesia, 38:1, 48-57, DOI: 10.1080/11101849.2021.2013654

Soliman, R., Elgendy, M., Said, R. N., Shaarawy, B., Helal, O. M., & Aly, H. (2022). A randomized controlled trial of a 30-second versus a 120- second delay in cord clamping after term birth. American Journal of Perinatology, Feb 15. https://doi.org/10.1055/A-1772-4543

Kabutoya, T., Imai, Y., Okuyama, T., Watanabe, H., Yokota, A., Kamioka, M., Watanabe, T., Komori, T., & Kario, K. (2022). Usefulness of Optimization of Interventricular Delay Using an Electrical Cardiometry Method in Patients with Cardiac Resynchronization Therapy Implantation. International Heart Journal, 63(2), 21–711. https://doi.org/10.1536/ihj.21-711

Stetzuhn, M., Tigges, T., Pielmus, A. G., Spies, C., Middel, C., Klum, M., Zaunseder, S., Orglmeister, R., & Feldheiser, A. (2022). Detection of a Stroke Volume Decrease by Machine-Learning Algorithms Based on Thoracic Bioimpedance in Experimental Hypovolaemia. Sensors (Basel, Switzerland), 22(14), 5066. https://doi.org/10.3390/S22145066

Jangid, S. K., Makhija, N., Chauhan, S., & Das, S. (2022). Comparison of Changes in Thoracic Fluid Content Between On-Pump and Off-Pump CABG by Use of Electrical Cardiometry. Journal of Cardiothoracic and Vascular Anesthesia. https://doi.org/10.1053/J.JVCA.2022.06.004

Slagt, C., Spoelder, E. J., Tacken, M. C. T., Frijlink, M., Servaas, S., Leijte, G., van Eijk, L. T., & van Geffen, G. J. (2022). Safety during interhospital helicopter transfer of ventilated COVID-19 patients. No clinical relevant changes in vital signs including non-invasive cardiac output. Respiratory Research, 23(1), 256. https://doi.org/10.1186/s12931-022-02177-5

Hsu, K.H., Lin, C., Lai, M.Y., et al. (2022) Cerebral Hemodynamics and Regional Oxygen Metabolism during Ductus Arteriosus Ligation in Preterm Infants. Neonatology, 119 (6): 703–711. doi:10.1159/000526007.

Said, A., Salah, M., Mamdouh, S., Heggy, E., & Wagih, M. (2022). Validation of stroke volume variation assessed by electrical cardiometry to predict fluid responsiveness in patients undergoing coronary artery bypass surgery after closure of the sternum: an observational study. The Egyptian Journal of Cardiothoracic Anesthesia, 16(3), 47. https://doi.org/10.4103/ejca.ejca_8_22

Sumbel, L., Nagaraju, L., Ogbeifun, H., Agarwal, A., & Bhalala, U. (2022). Comparing cardiac output measurements using electrical cardiometry versus phase contrast cardiac magnetic resonance imaging. Progress in Pediatric Cardiology, 66, 101551. https://doi.org/10.1016/J.PPEDCARD.2022.101551

Kamel, Y. A., Elmoniar, M. M., Fathi, Y. I., Lotfi, M. E., Alwarraky, M. S., & Yassen, K. A. (2022). Monitoring haemodynamic changes during transjugular portosystemic shunt insertion with electric cardiometry in sedated and spontaneous breathing patients. A diagnostic test accuracy study. https://doi.org/10.4103/joacp.joacp_198_21

Moustafa Halawa, N., Mamdouh El Sayed, A., Saleh Ibrahim, E., Khater, Y. H., & Ahmed Yassen, K. (2022). The respiratory and hemodynamic effects of alveolar recruitment in cirrhotic patients undergoing liver resection surgery: A randomized controlled trial. https://doi.org/10.4103/joacp.joacp_188_21

Falciola, V., Donath, S. M., Roden, E., Davidson, A., & Vutskits, L. (2022). Noninvasive cardiac output monitoring during anaesthesia and surgery in young children using electrical cardiometry: an observational study. In British Journal of Anaesthesia (Vol. 128, Issue 3, pp. e235–e238). Elsevier Ltd. https://doi.org/10.1016/j.bja.2021.12.032

Archer, T. L. (2022). Cardiac output-guided maternal position therapy for preterm labor—it’s time for a trial. In Acta Obstetricia et Gynecologica Scandinavica (Vol. 101, Issue 8, pp. 931–932). John Wiley and Sons Inc. https://doi.org/10.1111/aogs.14365

Sharkawy, M. S. El, Abdelghany, M. S., Dabe, A. A. El, & Hafez, A. A. A. El. (2022). Validation of Electrical Cardiometry Measurements Compared to Transthoracic Echocardiography in Fluid Responsiveness in Sepsis. Journal of Advances in Medicine and Medical Research, 10–20. https://doi.org/10.9734/jammr/2022/v34i1131359

Yoon, S. J., Han, J. H., Cho, K. H., Park, J., Lee, S. M., & Park, M. S. (2022). Tools for assessing lung fluid in neonates with respiratory distress. BMC Pediatrics, 22(1), 354. https://doi.org/10.1186/s12887-022-03361-8

Hori, M., Imamura, T., Oshima, A., Onoda, H., & Kinugawa, K. (2022). Novel Ramp Test to Optimize Pressure Setting of Adaptive Servo-Ventilation Using Non-Invasive Lung Fluid Level Quantification. American Journal of Case Reports, 23. https://doi.org/10.12659/AJCR.935086

Awadhare, P., Patel, R., McCallin, T., Mainali, K., Jackson, K., Starke, H., & Bhalala, U. (2022). Non-invasive Cardiac Output Monitoring and Assessment of Fluid Responsiveness in Children With Shock in the Emergency Department. Frontiers in Pediatrics, 10. https://doi.org/10.3389/FPED.2022.857106

Baik-Schneditz, N., Schwaberger, B., Mileder, L., et al. (2021a) Cardiac Output and Cerebral Oxygenation in Term Neonates during Neonatal Transition. Children, 8 (6): 439. doi:10.3390/children8060439.

Baik-Schneditz, N., Schwaberger, B., Mileder, L., et al. (2021b) Sex related difference in cardiac output during neonatal transition in term neonates. Cardiovascular Diagnosis and Therapy, 11 (2): 342-347. doi:10.21037/cdt-20-844.

Brettner, F., Heitzer, M., Thiele, F., et al. (2021) Non-invasive evaluation of macro-and microhemodynamic changes during induction of general anesthesia-A prospective observational single-blinded trial. Clinical Hemorheology and Microcirculation, 77 (1): 1-16. doi:10.3233/CH-190691.

Chao, K.Y. and Nassef, Y. (2021) A pilot study of short-term hemodynamic effects of negative pressure ventilation in chronic obstructive pulmonary disease assessed using electrical cardiometry. Annals of Noninvasive Electrocardiology. doi:10.1111/anec.12843.

El-Sheikh, A.S., Ismael, S.A., El-Shmaa, N.S., et al. (2021) The Effect of Cardiometry Guided Fluid Management on Outcome of Patients Presented for Intracranial Surgeries: Randomized Controlled Study. Journal of Advances in Medicine and Medical Research, pp. 16-25. doi:10.9734/jammr/2021/v33i1230936.

Fathy, S., Hasanin, A., Mostafa, M., et al. (2021) The benefit of adding lidocaine to ketamine during rapid sequence endotracheal intubation in patients with septic shock: A randomised controlled trial. Anaesthesia Critical Care and Pain Medicine, 40 (1). doi:10.1016/j.accpm.2020.06.017.

Ghanem, M.A. and El-Hefnawy, A.S. (2021) Basic hemodynamics and noninvasive cardiac output (Bioimpedance ICON Cardiometer): A diagnostic reliability during percutaneous nephrolithotomy bleeding under spinal anesthesia: Basic hemodynamic monitoring reliability during percutaneous nephrolithotomy. Egyptian Journal of Anaesthesia, 37 (1): 77-84. doi:10.1080/11101849.2021.1889747.

Gho, K., Woo, S.H., Lee, S.M., et al. (2021) Predictive and prognostic roles of electrical cardiometry in noninvasive assessments of community-acquired pneumonia patients with dyspnoea. Hong Kong Journal of Emergency Medicine, 28 (4): 205-214. doi:10.1177/1024907919860643.

Rao, S.S., Lalitha, A. v., Reddy, M., et al. (2021) Electrocardiometry for Hemodynamic Categorization and Assessment of Fluid Responsiveness in Pediatric Septic Shock: A Pilot Observational Study. Indian Journal of Critical Care Medicine, 25 (2): 185-192. doi:10.5005/jp-journals-10071-23730.

Liu, C.H., Li, L.H., Chang, M.L., et al. (2021) Electrical Cardiometry and Cardiac Biomarkers in 24-h and 48-h Ultramarathoners. International Journal of Sports Medicine. doi:10.1055/a-1380-4219.

Omar, I.H., Okasha, A.S., Ahmed, A.M., et al. (2021) Goal Directed Fluid Therapy based on Stroke Volume Variation and Oxygen Delivery Index using Electrical Cardiometry in patients undergoing Scoliosis Surgery. Egyptian Journal of Anaesthesia, 37 (1): 241-247. doi:10.1080/11101849.2021.1927418.

Ranjit, S., Natraj, R., Kissoon, N., Thiagarajan, R., Ramakrishnan, B., & Garciá, M. I. M. (2021). Variability in the physiologic response to fluid bolus in pediatric patients following cardiac surgery. Pediatric Critical Care Medicine, 22(8), e448–e458. https://doi.org/10.1097/CCM.0000000000004621

Slagt, C., Servaas, S., Ketelaars, R., et al. (2021) Non-invasive electrical cardiometry cardiac output monitoring during prehospital helicopter emergency medical care: a feasibility study. Journal of Clinical Monitoring and Computing. doi:10.1007/s10877-021-00657-5.

Soaida, S., Hanna, M., Mahmoud, A., et al. (2021) Electrical velocimetry (ICON cardiometry) assessment of hemodynamic changes associated with different inflation pressures during pediatric thoracoscopic surgery: a pilot study. The Egyptian Journal of Cardiothoracic Anesthesia, 15 (1): 3. doi:10.4103/ejca.ejca_20_20.

Sumbel, L., Wats, A., Salameh, M., et al. (2021) Thoracic Fluid Content (TFC) Measurement Using Impedance Cardiography Predicts Outcomes in Critically Ill Children. Frontiers in Pediatrics, 8. doi:10.3389/fped.2020.564902.

Tsai, F.F., Liu, C.M., Wang, H.P., et al. (2021) Deceleration capacity of heart rate variability as a predictor of sedation related hypotension. Scientific Reports, 11 (1). doi:10.1038/s41598-021-90342-z.

Healy, D. B., Dempsey, E. M., O’Toole, J. M., & Schwarz, C. E. (2021). In-Silico Evaluation of Anthropomorphic Measurement Variations on Electrical Cardiometry in Neonates. Children 2021, Vol. 8, Page 936, 8(10), 936. https://doi.org/10.3390/CHILDREN8100936

Schwarz, C. E., O’Toole, J. M., Livingstone, V., Pavel, A. M., & Dempsey, E. M. (2021). Signal Quality of Electrical Cardiometry and Perfusion Index in Very Preterm Infants. Neonatology, 118(6), 672–677. https://doi.org/10.1159/000518061

Gatelli, I. F., Vitelli, O., Fossati, M., de Rienzo, F., Chiesa, G., & Martinelli, S. (2021). Neonatal Septic Shock and Hemodynamic Monitoring in Preterm Neonates in a NICU: Added Value of Electrical Cardiometry in Real-Time Tailoring of Management and Therapeutic Strategies. American Journal of Perinatology. https://doi.org/10.1055/s-0041-1726123

Liu, M.-C., Wang, M.-T., Chen, P. K.-T., Niu, D.-M., Fan Chiang, Y.-H., Hsieh, M.-H., & Tsai, H.-C. (2021). Case Report: Anesthetic Management and Electrical Cardiometry as Intensive Hemodynamic Monitoring During Cheiloplasty in an Infant With Enzyme-Replaced Pompe Disease and Preserved Preoperative Cardiac Function. Frontiers in Pediatrics, 9. https://doi.org/10.3389/FPED.2021.729824

Matsuo, M., Kojima, S., Arisato, T., Matsubara, M., Koezuka, R., Kishida, M., Ogawa, K., Inoue, H., & Yoshihara, F. (2021). Hypocholesterolemia is a risk factor for reduced systemic vascular resistance reactivity during hemodialysis. Hypertension Research 2021 44:8, 44(8), 988–995. https://doi.org/10.1038/s41440-021-00640-2

Effat, H., Hamed, K., Hamed, G., Mostafa, R., & el Hadidy, S. (2021). Electrical Cardiometry Versus Carotid Doppler in Assessment of Fluid Responsiveness in Critically Ill Septic Patients. The Egyptian Journal of Critical Care Medicine, 8(4), 96–113. https://doi.org/10.1097/EJ9.0000000000000035

Singh, U., Choudhury, M., Choudhury, A., Hote, M. P., & Kapoor, P. M. (2021). Comparison the Effect of Etomidate vs. Thiopentone on Left Ventricular Strain and Strain Rate at the Time of Anesthesia Induction in Patients Undergoing Elective Coronary Artery Bypass Surgery: A Randomized Double Blind Controlled Trial. Journal of Cardiac Critical Care TSS, 05(03), 201–207. https://doi.org/10.1055/S-0042-1742618

Ghanem, M. A., & El-Hefnawy, A. S. (2021). Cardiopulmonary effects of prolonged surgical abdominal retractors application during general anesthesia: a prospective observational comparative study. Brazilian Journal of Anesthesiology (English Edition). https://doi.org/10.1016/J.BJANE.2021.06.019

Xu, S. H., Zhang, J., Zhang, Y., Zhang, P., & Cheng, G. Q. (2021). Non-invasive cardiac output measurement by electrical cardiometry and M-mode echocardiography in the neonate: a prospective observational study of 136 neonatal infants. Translational Pediatrics, 10(7), 1757. https://doi.org/10.21037/TP-21-20

Elsamadicy, E. A., Yazdani, S., Karuppiah, A., Marcano, I., Turan, O., Kodali, B. S., & Jessel, R. (2021). Paraganglioma Presenting as Hypoxia and Syncope in Pregnancy: A Case Report. A&A Practice, 15(3), e01411

Natraj, R., & Ranjit, S. (2022). BESTFIT-T3: A Tiered Monitoring Approach to Persistent/ Recurrent Paediatric Septic Shock – A Pilot Conceptual Report. Indian Journal of Critical Care Medicine, 26(7), 863–870. https://doi.org/10.5005/jp-journals-10071-24246

Beck, C.E., Sümpelmann, R., Nickel, K., et al. (2020) Systemic and regional cerebral perfusion in small infants undergoing minor lower abdominal surgery under awake caudal anaesthesia: An observational study. European Journal of Anaesthesiology, 37 (8): 696-700. doi:10.1097/EJA.0000000000001150.

Dennhardt, N., Elfgen-Schiffner, F.D., Keil, O., et al. (2020) Effect of etomidate on systemic and regional cerebral perfusion in neonates and infants with congenital heart disease: A prospective observational study. Paediatric Anaesthesia, 30 (9): 984-989. doi:10.1111/pan.13977.

Egbe, A.C., Wajih Ullah, M., Afzal, A., et al. (2020) Feasibility, reproducibility and accuracy of electrical velocimetry for cardiac output assessment in congenital heart disease. IJC Heart and Vasculature, 26. doi:10.1016/j.ijcha.2019.100464.

Elgebaly, A.S., Anw ar, A.G., Fathy, S.M., et al. (2020) The accuracy of electrical cardiometry for the noninvasive determination of cardiac output before and after lung surgeries compared to transthoracic echocardiography. Annals of Cardiac Anaesthesia, 23 (3): 288-292. doi:10.4103/aca.ACA_196_18.

Elsayed Afandy, M., el Sharkawy, S.I. and Omara, A.F. (2020) Transthoracic echocardiographic versus cardiometry derived indices in management of septic patients. Egyptian Journal of Anaesthesia, 36 (1): 312-318. doi:10.1080/11101849.2020.1854597.

Fathy, S., Hasanin, A.M., Raafat, M., et al. (2020) Thoracic fluid content: A novel parameter for predicting failed weaning from mechanical ventilation. Journal of Intensive Care, 8 (1). doi:10.1186/s40560-020-00439-2.

Gatelli, I.F., Vitelli, O., Chiesa, G., et al. (2020) Noninvasive Cardiac Output Monitoring in Newborn with Hypoplastic Left Heart Syndrome. American Journal of Perinatology, 37 (3): S54-S56. doi:10.1055/s-0040-1713603.

Lin, Y.K., Kao, C.C., Tseng, C.H., et al. (2020) Noninvasive Hemodynamic Profiles during Hemodialysis in Patients with and without Heart Failure. CardioRenal Medicine, 10 (4): 243-256. doi:10.1159/000506470.

Martini, S., Frabboni, G., Rucci, P., et al. (2020) Cardiovascular and cerebrovascular responses to cardio-respiratory events in preterm infants during the transitional period. Journal of Physiology, 598 (18): 4107-4119. doi:10.1113/JP279730.

Nakayama, A., Iwama, K., Makise, N., et al. (2020a) Use of a non-invasive cardiac output measurement in a patient with low-output dilated cardiomyopathy. Internal Medicine, 59 (12): 1525-1530. doi:10.2169/internalmedicine.4271-19.

Nakayama, A., Nakao, T., Fujiu, K., et al. (2020b) Safety Monitoring for Obstructive Hypertrophic Cardiomyopathy During Exercise. CJC Open, 2 (6): 732-734. doi:10.1016/j.cjco.2020.08.006.

Sasaki, K., Yamamoto, S. and Mutoh, T. (2020) Noninvasive assessment of fluid responsiveness for emergency abdominal surgery in dogs with pulmonary hypertension: Insights into high-risk companion animal anesthesia. PLoS ONE, 15 (10). doi:10.1371/journal.pone.0241234.

Sawada, M., Yoshimatsui, J., Nakai, M., et al. (2020) Appropriate delivery method for cardiac disease pregnancy based on noninvasive cardiac monitoring. Journal of Perinatal Medicine, 48 (4): 376-383. doi:10.1515/jpm-2019-0348.

Suppan, M., Barcelos, G., Luise, S., et al. (2020) Improved Exercise Tolerance, Oxygen Delivery, and Oxygen Utilization After Transcatheter Aortic Valve Implantation for Severe Aortic Stenosis. CJC Open, 2 (6): 490-496. doi:10.1016/j.cjco.2020.06.005.

Wilken, M., Oh, J., Pinnschmidt, H.O., et al. (2020) Effect of hemodialysis on impedance cardiography (electrical velocimetry) parameters in children. Pediatric Nephrology, 35 (4): 669-676. doi:10.1007/s00467-019-04409-1.

Mukhtar, A. M., Elayashy, M., Sayed, A. H., Obaya, G. M., Eladawy, A. A., Ali, M. A., Dahab, H. M., Khalaf, D. Z., Mohamed, M. A., Elfouly, A. H., Behairy, G. M., & Abdelaal, A. A. (2020). Validation of electrical velocimetry in resuscitation of patients undergoing liver transplantation. Observational study. Journal of Clinical Monitoring and Computing, 34(2), 271–276. https://doi.org/10.1007/s10877-019-00313-z

Szewc, U. Z., Tronina, O., & Wyzgal, J. (2020). Assessment of Hemodynamic Parameters in Recipients of a Liver Transplant. Transplantation Proceedings, 52(8), 2459–2462. https://doi.org/10.1016/J.TRANSPROCEED.2020.03.037

Dharmawati, I., Kurnia Wahyudhi, A., Dewi Syahti Fauzi, I., et al. (2019) Electrical cardiometry for non-invasive cardiac output monitoring in children with dengue hemorrhagic fever and shock in comparison be-tween referral and non-referral. Crit Care Shock, 22 (2): 109-114.

Eriksen, V.R., Trautner, S., Hahn, G.H., et al. (2019) Lactate acidosis and cardiac output during initial therapeutic cooling in asphyxiated newborn infants. PLoS ONE, 14 (3). doi:10.1371/journal.pone.0213537.

Hammad, Y., Hasanin, A., Elsakka, A., et al. (2019) Thoracic fluid content: a novel parameter for detection of pulmonary edema in parturients with preeclampsia. Journal of Clinical Monitoring and Computing, 33 (3): 413-418. doi:10.1007/s10877-018-0176-6.

Hasanin, A., Mourad, K.H., Farouk, I., et al. (2019) The impact of goal-directed fluid therapy in prolonged major abdominal surgery on extravascular lung water and oxygenation: A randomized controlled trial. Open Access Macedonian Journal of Medical Sciences, 7 (8): 1276-1281. doi:10.3889/oamjms.2019.173.

Hsu, K.H., Wu, T.W., Wu, I.H., et al. (2019) Baseline cardiac output and its alterations during ibuprofen treatment for patent ductus arteriosus in preterm infants. BMC Pediatrics, 19 (1). doi:10.1186/s12887-019-1560-1.

Jain, D., D`Ugard, C., Bancalari, E., et al. (2019) Cerebral oxygenation in preterm infants receiving transfusion. Pediatric Research, 85 (6): 786-789. doi:10.1038/s41390-018-0266-7.

Kao, C.C., Tseng, C.H., Lo, M.T., et al. (2019) Alteration autonomic control of cardiac function during hemodialysis predict cardiovascular outcomes in end stage renal disease patients. Scientific Reports, 9 (1). doi:10.1038/s41598-019-55001-4.

Kuster, M., Haltmeier, T., Exadaktylos, A., et al. (2019) Non-invasive cardiac output monitoring device “ICON” in trauma patients: a feasibility study. European Journal of Trauma and Emergency Surgery, 45 (6): 1069-1076. doi:10.1007/s00068-018-0984-x.

Mostafa, H., Shaban, M., Hasanin, A., et al. (2019) Evaluation of peripheral perfusion index and heart rate variability as early predictors for intradialytic hypotension in critically ill patients. BMC Anesthesiology, 19 (1). doi:10.1186/s12871-019-0917-1.

Samhan, Y.M., Ebied, S.R., Khafagy, H.F., et al. (2019) Dexmedetomidine Versus Magnesium for Facilitating I-gel® Insertion. Anaesthesia & Critical Care Medicine Journal, 4 (1). doi:10.23880/accmj-16000147.

Yoshida, A., Kaji, T., Yamada, H., et al. (2019) Measurement of hemodynamics immediately after vaginal delivery in healthy pregnant women by electrical cardiometry. The Journal of Medical Investigation, 66 (1.2): 75-80. doi:10.2152/jmi.66.75.

Aziz, M.M., Eyada, I.K., el Megeid, M.A.A., et al. (2019) Bedside evaluation of fluid responsiveness in shock state using electrical cardiometry. Indian Journal of Public Health Research and Development, 10 (12): 1570–1576. doi:10.37506/v10/i12/2019/ijphrd/192432.

Altamirano-Diaz, L., Welisch, E., Dempsey, A.A., et al. (2018a) Non-invasive measurement of cardiac output in children with repaired coarctation of the aorta using electrical cardiometry compared to transthoracic Doppler echocardiography. Physiological Measurement, 39 (5). doi:10.1088/1361-6579/aac02b.

Altamirano-Diaz, L., Welisch, E., Rauch, R., et al. (2018b) Does obesity affect the non-invasive measurement of cardiac output performed by electrical cardiometry in children and adolescents? Journal of Clinical Monitoring and Computing, 32 (1): 45-52. doi:10.1007/s10877-017-9994-1.

Chaiyakulsil, C., Chantra, M., Katanyuwong, P., et al. (2018) Comparison of three non-invasive hemodynamic monitoring methods in critically ill children. PLoS ONE, 13 (6). doi:10.1371/journal.pone.0199203.

Hasanin, A., Soryal, R., Kaddah, T., et al. (2018) Hemodynamic effects of lateral tilt before and after spinal anesthesia during cesarean delivery: An observational study. BMC Anesthesiology, 18 (1). doi:10.1186/s12871-018-0473-0.

Juri, T., Suehiro, K., Tsujimoto, S., et al. (2018) Pre-anesthetic stroke volume variation can predict cardiac output decrease and hypotension during induction of general anesthesia. Journal of Clinical Monitoring and Computing, 32 (3): 415-422. doi:10.1007/s10877-017-0038-7.

Kammerer, T., Faihs, V., Hulde, N., et al. (2018) Changes of hemodynamic and cerebral oxygenation after exercise in normobaric and hypobaric hypoxia: Associations with acute mountain sickness. Annals of Occupational and Environmental Medicine, 30 (1). doi:10.1186/s40557-018-0276-2.

Katheria, V., Poeltler, D.M., Brown, M.K., et al. (2018) Early prediction of a significant patent ductus arteriosus in infants <32 weeks gestational age. Journal of Neonatal-Perinatal Medicine, 11 (3): 331-334. doi:10.3233/NPM-1771.

Lotfy, M., Yassen, K., el Sharkawy, O., et al. (2018) Electrical cardiometry compared to transesophageal doppler for hemodynamics monitoring and fluid management in pediatrics undergoing Kasai operation. A randomized controlled trial. Pediatric Anesthesia and Critical Care Journal, 6 (1): 46-54. doi:10.14587/paccj.2018.8.

Padmanabhan, P., Oragwu, C., Das, B., et al. (2018) Utility of Non-Invasive Monitoring of Cardiac Output and Cerebral Oximetry during Pain Management of Children with Sickle Cell Disease in the Pediatric Emergency Department. Children, 5 (2): 17. doi:10.3390/children5020017.

Ragab, D., Taema, K.M., Farouk, W., et al. (2018) Continuous infusion of furosemide versus intermittent boluses in acute decompensated heart failure: Effect on thoracic fluid content. Egyptian Heart Journal, 70 (2): 65-70. doi:10.1016/j.ehj.2017.12.005.

Rodríguez Sánchez de la Blanca, A., Sánchez Luna, M., González Pacheco, N., et al. (2018) Electrical velocimetry for non-invasive monitoring of the closure of the ductus arteriosus in preterm infants. European Journal of Pediatrics, 177 (2): 229-235. doi:10.1007/s00431-017-3063-0.

Sasaki, K., Mutoh, T., Yamamoto, S., et al. (2018) Comparison of noninvasive dynamic indices of fluid responsiveness among different ventilation modes in dogs recovering from experimental cardiac surgery. Medical Science Monitor, 24: 7736-7741. doi:10.12659/MSM.910135.

Shah, S.B., Bhargava, A.K., Chawla, R., et al. (2018) Robotic hysterectomy in Trendelenburg position in a severely anaemic JKa alloimmunised patient with impending high-output cardiac failure: An anaesthetic challenge. Indian Journal of Anaesthesia, 62 (5): 385?388. doi:10.4103/ija.IJA_5_18.

Talwar, S., Bhoje, A., Khadagawat, R., et al. (2018) Oral thyroxin supplementation in infants undergoing cardiac surgery: A double-blind placebo-controlled randomized clinical trial. Journal of Thoracic and Cardiovascular Surgery, 156 (3): 1209-1217.e3. doi:10.1016/j.jtcvs.2018.05.044.

Teefy, P., Bagur, R., Phillips, C., et al. (2018) Impact of Obesity on Noninvasive Cardiac Hemodynamic Measurement by Electrical Cardiometry in Adults With Aortic Stenosis. Journal of Cardiothoracic and Vascular Anesthesia, 32 (6): 2505-2511. doi:10.1053/j.jvca.2018.04.040.

Weaver, B., Guerreso, K., Conner, E.A., et al. (2018) Hemodynamics and perfusion in premature infants during transfusion. AACN Advanced Critical Care, 29 (2): 126-137. doi:10.4037/aacnacc2018402.

Wu, T.W., Tamrazi, B., Soleymani, S., et al. (2018) Hemodynamic Changes During Rewarming Phase of Whole-Body Hypothermia Therapy in Neonates with Hypoxic-Ischemic Encephalopathy. Journal of Pediatrics, 197: 68-74.e2. doi:10.1016/j.jpeds.2018.01.067.

Lu, Z., Wang, X., Yang, J., Li, S., & Yan, J. (2018). Vasopressin in vasodilatory shock for both left and right heart anomalous pediatric patients after cardiac surgery. Shock, 50(2), 173–177. https://doi.org/10.1097/SHK.0000000000001051

Archer, T.L. (2017) Transthoracic echocardiography and electrical cardiometry elucidate the hemodynamics of autotransfusion during labor under epidural analgesia. International Journal of Obstetric Anesthesia. 31 pp. 113-115. doi:10.1016/j.ijoa.2017.03.010.

Blohm, M.E., Hartwich, J., Obrecht, D., et al. (2017) Effect of patent ductus arteriosus and patent foramen ovale on left ventricular stroke volume measurement by electrical velocimetry in comparison to transthoracic echocardiography in neonates. Journal of Clinical Monitoring and Computing, 31 (3): 589-598. doi:10.1007/s10877-016-9878-9.

Boet, A., Jourdain, G., Demontoux, S., et al. (2017) Basic hemodynamic monitoring using ultrasound or electrical cardiometry during transportation of neonates and infants. Pediatric Critical Care Medicine, 18 (11). doi:10.1097/PCC.0000000000001298.

Hsu, K.H., Wu, T.W., Wu, I.H., et al. (2017) Electrical Cardiometry to Monitor Cardiac Output in Preterm Infants with Patent Ductus Arteriosus: A Comparison with Echocardiography. Neonatology, 112 (3): 231-237. doi:10.1159/000475774.

Juri, T., Suehiro, K., Kuwata, S., et al. (2017) Hydroxyethyl starch 130/0.4 versus crystalloid co-loading during general anesthesia induction: a randomized controlled trial. Journal of Anesthesia, 31 (6): 878-884. doi:10.1007/s00540-017-2416-1.

Katheria, A.C., Brown, M.K., Hassan, K., et al. (2017) Hemodynamic effects of sodium bicarbonate administration. Journal of Perinatology, 37 (5): 518-520. doi:10.1038/jp.2016.258.

Murasawa, T., Takahashi, M., Myojo, M., et al. (2017) Identification of the State of Maximal Hyperemia in the Assessment of Coronary Fractional Flow Reserve Using Non-Invasive Electrical Velocimetry. International Heart Journal, 58 (3): 365-370. doi:10.1536/ihj.16-479.

Narula, J., Chauhan, S., Ramakrishnan, S., et al. (2017a) Electrical Cardiometry: A Reliable Solution to Cardiac Output Estimation in Children With Structural Heart Disease. Journal of Cardiothoracic and Vascular Anesthesia, 31 (3): 912-917. doi:10.1053/j.jvca.2016.12.009.

Narula, J., Kiran, U., Malhotra Kapoor, P., et al. (2017b) Assessment of Changes in Hemodynamics and Intrathoracic Fluid Using Electrical Cardiometry During Autologous Blood Harvest. Journal of Cardiothoracic and Vascular Anesthesia, 31 (1): 84-89. doi:10.1053/j.jvca.2016.07.032.

Paviotti, G., de Cunto, A., Moressa, V., et al. (2017a) Thoracic fluid content by electric bioimpedance correlates with respiratory distress in newborns. Journal of Perinatology, 37 (9): 1024-1027. doi:10.1038/jp.2017.100.

Paviotti, G., Todero, S. and Demarini, S. (2017b) Cardiac output decreases and systemic vascular resistance increases in newborns placed in the left-lateral position. Journal of Perinatology, 37 (5): 563-565. doi:10.1038/jp.2016.251.

Sasaki, K., Mutoh, T., Mutoh, T., et al. (2017a) Electrical velocimetry for noninvasive cardiac output and stroke volume variation measurements in dogs undergoing cardiovascular surgery. Veterinary Anaesthesia and Analgesia, 44 (1): 7-16. doi:10.1111/vaa.12380.

Sasaki, K., Mutoh, T., Mutoh, T., et al. (2017b) Noninvasive stroke volume variation using electrical velocimetry for predicting fluid responsiveness in dogs undergoing cardiac surgery. Veterinary Anaesthesia and Analgesia, 44 (4): 719-726. doi:10.1016/j.vaa.2016.11.001.

Soliman, R. (2017) Prediction of fluid status and survival by electrical cardiometry in septic patients with acute circulatory failure. The Egyptian Journal of Critical Care Medicine, 5 (2): 65-68. doi:10.1016/j.ejccm.2017.03.001.

Tirotta, C.F., Lagueruela, R.G., Madril, D., et al. (2017) Non-invasive cardiac output monitor validation study in pediatric cardiac surgery patients. Journal of Clinical Anesthesia, 38: 129-132. doi:10.1016/j.jclinane.2017.02.001.

Wu, T.W., Lien, R.I., Seri, I., et al. (2017) Changes in cardiac output and cerebral oxygenation during prone and supine sleep positioning in healthy term infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 102 (6): F483-F489. doi:10.1136/archdischild-2016-311769.

Yacoubian, S., Oxford, C.M. and Kodali, B.S. (2017) Changes in cardiac index during labour analgesia: A double-blind randomised controlled trial of epidural versus combined spinal epidural analgesia – a preliminary study. Indian Journal of Anaesthesia, 61 (4): 295-301. doi:10.4103/ija.IJA_641_16.

Yoshitake, S., Miyamoto, T., Tanaka, Y., et al. (2017) Non-invasive measurement of cardiac output using AESCULON mini after Fontan operation. Pediatrics International, 59 (2): 141-144. doi:10.1111/ped.13084.

Boet, A., Jourdain, G., Demontoux, S., et al. (2016) Stroke volume and cardiac output evaluation by electrical cardiometry: Accuracy and reference nomograms in hemodynamically stable preterm neonates. Journal of Perinatology, 36 (9): 748-752. doi:10.1038/jp.2016.65.

Das, S. and Ladha, S. (2016) Impact of dexmedetomidine on hemodynamic parameters and anaesthetic requirement during induction of anaesthesia in coronary artery bypass surgery patients. Indian Journal of Clinical Anaesthesia, 3 (3): 431. doi:10.5958/2394-4994.2016.00072.x.

Freidl, T., Baik, N., Pichler, G., et al. (2016) Haemodynamic Transition after Birth: A New Tool for Non-Invasive Cardiac Output Monitoring. Neonatology, 111 (1): 55-60. doi:10.1159/000446468.

Hasija, S., Chauhan, S., Jain, P., et al. (2016) Comparison of speed of inhalational induction in children with and without congenital heart disease. Annals of Cardiac Anaesthesia, 19 (3): 468-474. doi:10.4103/0971-9784.185531.

Hsu, K.H., Wu, T.W., Wang, Y.C., et al. (2016) Hemodynamic reference for neonates of different age and weight: A pilot study with electrical cardiometry. Journal of Perinatology, 36 (6): 481-485. doi:10.1038/jp.2016.2.

Katheria, A., Poeltler, D., Durham, J., et al. (2016) Neonatal Resuscitation with an Intact Cord: A Randomized Clinical Trial. Journal of Pediatrics, 178:75-80.e3. doi: 10.1016/j.jpeds.2016.07.053.

King, M.R., Anderson, T.A., Sui, J., et al. (2016) Age-related incidence of desaturation events and the cardiac responses on stroke index, cardiac index, and heart rate measured by continuous bioimpedance noninvasive cardiac output monitoring in infants and children undergoing general anesthesia. Journal of Clinical Anesthesia, 32: 181?188. doi:10.1016/j.jclinane.2016.02.026.

Labib, H., Fahmy, N. and Elie Hamawy, T. (2016a) Terlipressin versus adrenaline in refractory septic shock. Ain-Shams Journal of Anaesthesiology, 9 (2): 186. doi:10.4103/1687-7934.182224.

Labib, H., Hussien, R. and Salem, Y. (2016b) Monitoring the correlation between passive leg-raising maneuver and fluid challenge in pediatric cardiac surgery patients using impedance cardiography. The Egyptian Journal of Cardiothoracic Anesthesia, 10 (1): 17. doi:10.4103/1687-9090.183222.

Liu, C.A., Sui, J., Coté, C.J., et al. (2016a) The Use of Epinephrine in Caudal Anesthesia Increases Stroke Volume and Cardiac Output in Children. Regional Anesthesia and Pain Medicine, 41 (6): 780-786. doi:10.1097/AAP.0000000000000498.

Liu, Y.H., Dhakal, B.P., Keesakul, C., et al. (2016b) Continuous non-invasive cardiac output monitoring during exercise: Validation of electrical cardiometry with Fick and thermodilution methods. British Journal of Anaesthesia. 117 (1) pp. 129-131. doi:10.1093/bja/aew156.

Mahmoud, K.H., Mokhtar, M.S., Soliman, R.A., et al. (2016) Non invasive adjustment of fluid status in critically ill patients on renal replacement therapy. Role of Electrical Cardiometry. The Egyptian Journal of Critical Care Medicine, 4 (2): 57-65. doi:10.1016/j.ejccm.2016.06.001.

Martin, E., Anyikam, A., Ballas, J., et al. (2016) A validation study of electrical cardiometry in pregnant patients using transthoracic echocardiography as the reference standard. Journal of Clinical Monitoring and Computing, 30 (5): 679-686. doi:10.1007/s10877-015-9771-y.

Soliman, R., Zeid, D., Yehya, M., et al. (2016) Bedside Assessment of Preload in Acute Circulatory Failure Using Cardiac Velocimetry. Journal of Medical Diagnostic Methods, 5 (3). doi:10.4172/2168-9784.1000222.

Suehiro, K., Joosten, A., Murphy, L.S.L., et al. (2016) Accuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis. Journal of Clinical Monitoring and Computing, 30 (5): 603-620. doi:10.1007/s10877-015-9757-9.

Yang, H.W. and Su, C.H. (2016) A case report of cautious use of levosimendan in patients of acute heart failure and multi-organ damage: Potentially reasonable and salvageable. Journal of Internal Medicine of Taiwan, 27 (4): 202-206. doi:10.6314/JIMT.2016.27(4).07.

Bohanon, F.J., Mrazek, A.A., Shabana, M.T., et al. (2015) Heart Rate Variability Analysis is More Sensitive at Identifying Neonatal Sepsis than Conventional Vital Signs. The American Journal of Surgery, 210 (4): 661-667. doi:10.1016/j.amjsurg.2015.06.002.

Coté, C.J., Sui, J., Anderson, T.A., et al. (2015) Continuous noninvasive cardiac output in children: Is this the next generation of operating room monitors? Initial experience in 402 pediatric patients. Paediatric Anaesthesia, 25 (2): 150-159. doi:10.1111/pan.12441.

Fleck, T., Schubert, S., Ewert, P., et al. (2015) Propofol Effect on Cerebral Oxygenation in Children with Congenital Heart Disease. Pediatric Cardiology, 36 (3): 543-549. doi:10.1007/s00246-014-1047-7.

Katheria, A.C., Sauberan, J.B., Akotia, D., et al. (2015a) A Pilot Randomized Controlled Trial of Early versus Routine Caffeine in Extremely Premature Infants. American Journal of Perinatology, 32 (9): 879-886. doi:10.1055/s-0034-1543981.

Katheria, A.C., Truong, G., Cousins, L., et al. (2015b) Umbilical cord milking versus delayed cord clamping in preterm infants. Pediatrics, 136 (1): 61-69. doi:10.1542/peds.2015-0368.

Katheria, A.C., Wozniak, M., Harari, D., et al. (2015c) Measuring cardiac changes using electrical impedance during delayed cord clamping: a feasibility trial. Maternal Health, Neonatology and Perinatology, 1 (1). doi:10.1186/s40748-015-0016-3.

Kusumastuti, N.P. and Osaki, M. (2015) Electric velocimetry and transthoracic echocardiography for noninvasive cardiac output monitoring in children after cardiac surgery. Critical Care and Shock, 18 (2): 36-42.

Kusunose, K., Yamada, H., Hotchi, J., et al. (2015) Prediction of future overt pulmonary hypertension by 6-min walk stress echocardiography in patients with connective tissue disease. Journal of the American College of Cardiology, 66 (4): 376?384. doi:10.1016/j.jacc.2015.05.032.

Lien, R., Hsu, K.H., Chu, J.J., et al. (2015) Hemodynamic alterations recorded by electrical cardiometry during ligation of ductus arteriosus in preterm infants. European Journal of Pediatrics, 174 (4): 543-550. doi:10.1007/s00431-014-2437-9.

Liu, Y., Pian-Smith, M.C.M., Leffert, L.R., et al. (2015) Continuous measurement of cardiac output with the electrical velocimetry method in patients under spinal anesthesia for cesarean delivery. Journal of Clinical Monitoring and Computing, 29 (5): 627-634. doi:10.1007/s10877-014-9645-8.

Torigoe, T., Sato, S., Nagayama, Y., et al. (2015) Influence of patent ductus arteriosus and ventilators on electrical velocimetry for measuring cardiac output in very-low/low birth weight infants. Journal of Perinatology, 35 (7): 485-489. doi:10.1038/jp.2014.245.

Vanderhoek, S.M. and Coté, C.J. (2015) Measurement of cardiac index and stroke volume using electrical cardiometry before and after administration of adenosine in a 6-year-old patient with supraventricular tachycardia. Journal of Clinical Anesthesia, 27 (8): 682-684. doi:10.1016/j.jclinane.2015.08.008.

Blohm, M.E., Obrecht, D., Hartwich, J., et al. (2014) Impedance cardiography (electrical velocimetry) and transthoracic echocardiography for non-invasive cardiac output monitoring in pediatric intensive care patients: A prospective single-center observational study. Critical Care, 18 (6). doi:10.1186/s13054-014-0603-0.

Grollmuss, O. and Gonzalez, P. (2014) Non-invasive cardiac output measurement in low and very low birth weight infants: A method comparison. Frontiers in Pediatrics, 2 (MAR). doi:10.3389/fped.2014.00016.

Malik, V., Subramanian, A., Chauhan, S., et al. (2014) Correlation of Electric Cardiometry and Continuous Thermodilution Cardiac Output Monitoring Systems. World Journal of Cardiovascular Surgery, 04 (07): 101-108. doi:10.4236/wjcs.2014.47016.

Rajput, R.S., Das, S., Chauhan, S., et al. (2014) Comparison of Cardiac Output Measurement by Noninvasive Method with Electrical Cardiometry and Invasive Method with Thermodilution Technique in Patients Undergoing Coronary Artery Bypass Grafting. World Journal of Cardiovascular Surgery, 04 (07): 123-130. doi:10.4236/wjcs.2014.47019.

Song, R., Rich, W., Kim, J.H., et al. (2014) The use of electrical cardiometry for continuous cardiac output monitoring in preterm neonates: a validation study. American journal of perinatology, 31 (12): 1105-1110. doi:10.1055/s-0034-1371707.

Wong, J., Dorney, K., Hannon, M., et al. (2014) Cardiac output assessed by non-invasive monitoring is associated with ECG changes in children with critical asthma. Journal of Clinical Monitoring and Computing, 28 (1): 75?82. doi:10.1007/s10877-013-9498-6.

Noonan, P.M.E., Viswanathan, S., Chambers, A., et al. (2014) Non-invasive cardiac output monitoring during catheter interventions in patients with cavopulmonary circulations. Cardiology in the Young, 24 (3): 417-421. doi:10.1017/S1047951113000486.

Fathi, M., Imani, F., Joudi, M., et al. (2013) Comparison between the effects of Ringer`s lactate and hydroxyethyl starch on hemodynamic parameters after spinal anesthesia: A randomized clinical trial. Anesthesiology and Pain Medicine, 2 (3): 127-133. doi:10.5812/aapm.7850.

Mejaddam, A.Y., Birkhan, O.A., Sideris, A.C., et al. (2013a) Real-time heart rate entropy predicts the need for lifesaving interventions in trauma activation patients. Journal of Trauma and Acute Care Surgery, 75 (4): 607-612. doi:10.1097/TA.0b013e31829bb991.

Mejaddam, A.Y., van der Wilden, G.M., Chang, Y., et al. (2013b) Development of a Rugged Handheld Device for Real-Time Analysis of Heart Rate: Entropy in Critically Ill Patients. Journal of Special Operations Medicine, 13 (1): 29?33.

Narula, J., Kiran, U., Chauhan, S., et al. (2013) Electrical Cardiometry in Patients undergoing Cardiac Catheterisation. International Journal of Perioperative Ultrasound and Applied Technologies, 2: 102-107. doi:10.5005/jp-journals-10027-1045.

Peev, M.P., Naraghi, L., Chang, Y., et al. (2013) Real-time sample entropy predicts life-saving interventions after the Boston Marathon bombing. Journal of Critical Care, 28 (6): 1109.e1-1109.e4. doi:10.1016/j.jcrc.2013.08.026.

Rauch, R., Welisch, E., Lansdell, N., et al. (2013) Non-invasive measurement of cardiac output in obese children and adolescents: Comparison of electrical cardiometry and transthoracic Doppler echocardiography. Journal of Clinical Monitoring and Computing, 27 (2): 187-193. doi:10.1007/s10877-012-9412-7.

Wong, J., Agus, M.S.D. and Steil, G.M. (2013) Cardiac parameters in children recovered from acute illness as measured by electrical cardiometry and comparisons to the literature. Journal of Clinical Monitoring and Computing, 27 (1): 81-91. doi:10.1007/s10877-012-9401-x.

Caplow, J., McBride, S.C., Steil, G.M., et al. (2012) Changes in cardiac output and stroke volume as measured by Non-invasive CO monitoring in infants with RSV bronchiolitis. Journal of Clinical Monitoring and Computing, 26 (3): 197-205. doi:10.1007/s10877-012-9361-1.

Grollmuss, O., Demontoux, S., Capderou, A., et al. (2012) Electrical velocimetry as a tool for measuring cardiac output in small infants after heart surgery. Intensive Care Medicine, 38 (6): 1032-1039. doi:10.1007/s00134-012-2530-3.

Archer, T.L., Conrad, B.E., Suresh, P., et al. (2012) Electrical velocimetry demonstrates the increase in cardiac output and decrease in systemic vascular resistance accompanying cesarean delivery and oxytocin administration. Journal of Clinical Anesthesia. 24 (1) pp. 79-82. doi:10.1016/j.jclinane.2011.02.014.

Noori, S., Drabu, Bb. and Soleymani, S. (2012) Continuous non-invasive cardiac output measurements in the neonate by electrical velocimetry: A comparison with echocardiography. Archives of Disease in Childhood: Fetal and Neonatal Edition, 97 (5): 340-343. doi:10.1136/archdischild-2011-3.

Schueler, M., Voss, F., Bauer, A., et al. (2012) Atrioventricular delay programming in cardiac resynchronization therapy devices: Fixed or adaptive? A randomized monocenter trial. Journal of Electrocardiology, 45 (6): 783-786. doi:10.1016/j.jelectrocard.2012.05.005.

Wong, J., Steil, G.M., Curtis, M., et al. (2012) Cardiovascular effects of dexmedetomidine sedation in children. Anesthesia and Analgesia, 114 (1): 193-199. doi:10.1213/ANE.0b013e3182326d5a.

Archer, T.L. (2011) Electrical velocimetry elucidates the hemodynamics of hypertension caused by indigo carmine. Journal of Clinical Anesthesia. 23 (2) pp. 166-168. doi:10.1016/j.jclinane.2010.02.013.

Archer, T.L. and Conrad, B.E. (2011) Electrical velocimetry follows the hemodynamics of drug therapy and aortocaval compression in preeclampsia. International Journal of Obstetric Anesthesia. 20 (1) pp. 91-92. doi:10.1016/j.ijoa.2010.08.001.

Archer, T.L., Sureshi, P. and Shapiro, A.E. (2011) Cardiac output measurement, by means of electrical velocimetry, may be able to determine optimum maternal position during gestation, labour and caesarean delivery, by preventing vena caval compression and maximising cardiac output and placental perfusion pressure. Anaesthesia and Intensive Care, 39 (2): 308-311.

Steil, G.M., Eckstein, O.S., Caplow, J., et al. (2011) Non-invasive cardiac output and oxygen delivery measurement in an infant with critical anemia. Journal of Clinical Monitoring and Computing, 25 (2): 113-119. doi:10.1007/s10877-011-9287-z.

Trinkmann, F., Berger, M., Hoffmann, U., et al. (2011) A comparative evaluation of electrical velocimetry and inert gas rebreathing for the non-invasive assessment of cardiac output. Clinical Research in Cardiology, 100 (10): 935-943. doi:10.1007/s00392-011-0329-9.

Archer, T. L., Suresh, P., & Ballas, J. (2011). Don’t forget aortocaval compression when imaging abdominal veins in pregnant patients. In Ultrasound in Obstetrics and Gynecology (Vol. 38, Issue 4, pp. 479–480). John Wiley and Sons Ltd. https://doi.org/10.1002/uog.10065

Boethig, D., Ernst, F., Sarikouch, S., et al. (2010) Physical stress testing of bovine jugular veins using magnetic resonance imaging, echocardiography and electrical velocimetry. Interactive Cardiovascular and Thoracic Surgery, 10 (6): 877-883. doi:10.1510/icvts.2009.224386.

Flinck, M., Gradén, A., Milde, H., et al. (2010) Cardiac output measured by electrical velocimetry in the CT suite correlates with coronary artery enhancement: A feasibility study. Acta Radiologica, 51 (8): 895-902. doi:10.3109/02841851.2010.503663.

Voss, F., Becker, R., Hauck, M., et al. (2009) The basic pacing rate in CRT patients: The higher the better? Clinical Research in Cardiology, 98 (4): 219-223. doi:10.1007/s00392-009-0745-2.

Mellert, F., Lindner, P., Schiller, W., et al. (2008) Therapeutic optimization of atrioventricular delay in cardiosurgical ICU patients by noninvasive cardiac output measurements versus pulse contour analysis. Thoracic and Cardiovascular Surgeon, 56 (5): 269?273. doi:10.1055/s-2008-1038515.

Norozi, K., Beck, C., Osthaus, W.A., et al. (2008) Electrical velocimetry for measuring cardiac output in children with congenital heart disease. British Journal of Anaesthesia, 100 (1): 88-94. doi:10.1093/bja/aem320.

Schubert, S., Schmitz, T., Weiss, M., et al. (2008) Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery: Evaluation of transesophageal Doppler and electric velocimetry. Journal of Clinical Monitoring and Computing, 22 (4): 299-307. doi:10.1007/s10877-008-9133-0.

Alexander Osthaus, W., Huber, D., Beck, C., et al. (2007) Comparison of electrical velocimetry and transpulmonary thermodilution for measuring cardiac output in piglets. Paediatric Anaesthesia, 17 (8): 749?755. doi:10.1111/j.1460-9592.2007.02210.x.

Lindner, P., Mellert, F., Haushofer, M., et al. (2007) Noninvasive cardiac output measurement in cardiovascular ICU-patients ? comparison of conventional impedance cardiography, electrical velocimetry and thermodilution methods. The Thoracic and Cardiovascular Surgeon, 55 (S 1). doi:10.1055/s-2007-967607.

Zoremba, N., Bickenbach, J., Krauss, B., et al. (2007) Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output. Acta Anaesthesiologica Scandinavica, 51 (10): 1314-1319. doi:10.1111/j.1399-6576.2007.01445.x.

Schmidt, C., Theilmeier, G., van Aken, H., et al. (2005) Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. British Journal of Anaesthesia, 95 (5): 603-610. doi:10.1093/bja/aei224.

Explore our EC™ Portfolio